
[8] in a small radius burner, which may prove significant because of retardation of the flame 
in the gas suspension as compared to the case of a pure gas mixture. Radiant heat loss from 
radiating particles may also play some role. 

Consideration of these effects requires further development of the model of powder--flame 
interaction. The theory presented here indicates that all the basic experimental facts pre- 
sented above are adequately described by a model including only the thermal interaetionmechaniem. 

NOTATION 

Tg, Cg, pg, %g, gas temperature, specific heat, density, and thermal conductivity; Tp, 
Cp, pp, Wp, Sp, particle temperature, specific heat, density, volume, and area; E, k, R, Q, 
activation energy, preexponential term, ideal gas constant, thermal effect of combustion of 
initial reagent b;@D, @g, dimensionless gas and particle temperatures; T = t/t+ and ~ = x/x+, 
dimensionless time and coordinate; ~, B, ~, I = L/x+, T,, parameters; L, half width of igni- 
tion hearth; Z,, critical hearth size. 
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METHODS OF RESEARCHING THERMOPHYSICAL PARAMETERS AND PHENOMENA BY MEANS 

OF NONSTATIONARY-FREQUENCY MEASUREMENTS. 

PART 2. STEP AND INSTANTANEOUS HEATING METHODS 

A. G. Shashkov, V. I. Krylovich, 
and A. S. Konovalov 

UDC 536.24 

Various types of instantaneous and stepped heat source are considered, which act in 
unbounded bodies. A method has been devised forusing the solutions to define the 
thermophysical parameters by means of nonstatlonary-frequeney measurement methods. 

Pulse, stepped, and periodic heating methods are [l]the most promising and correspond 
to current requirements as regards speed, accuracy, and informativeness. Phase and frequency 
measurements may be made instead of amplitude ones to considerable advantage as regards reso- 
lution and speed [i], but in that study, the restricted volume meant that it dealt with only 
one form of step methods, namely a semiinfinite body with boundary conditions of the first 
kind. That however demonstrated the main advantages of the formulation and solutions. There- 
fore, here and subsequently we avoid giving excess details. 
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The most general case is where the thermal pulse length ro takes any finite value, which 
will be considered in the next part of this study, while here we restrict consideration to two 
asymptotic cases: steps, To § ~, and instantaneous sources, ro -> 0. We consider boundary 
conditions of a second kind as those most widely used in such measurements, together with 
three basic heat source types: point, line, and planar acting in an unbounded body. 

The source--function method represents the most natural approach here [2, 3]. 

The function 

Q d c  exp[--(X - -  Xl)2 "q- (Y - -  yl)2 -~ (Z - -  ~1)2 ] 
T(xl g, z, ~ - - t ) =  [ 2 ] / ~ t a ( ~ t ) p  - 4a('~--t) " (1) 

represents a fundamental solution to the conduction equation and is called the instantaneous 
source temperature-influence function; it is the solution for the temperature distribution in 
an unbounded body at any instant arising from an instantaneous source Qx at xx, yx, and zt at 
time T = t. 

We integrate (i) over the spatial coordinates to get expressions for a line source 

QJc exp[ (x- -  x~)~ + (g-- YO~ ] 
T(x, y, x - - t ) =  [2 ]/~a(x_t)]  z 4a( 'c-- t )  (2) 

and a p l a n a r  one . . . . .  7 . . . . .  

Q~/c exp[ (x- -x l )Z]  
T(x, z - - - t ) =  2_Vrta(T~t ) . 4a(T-- t )  ~ (3) 

We put t = 0 to write (1)-(3) as a general expression 

T~ = =~ ai exp [-- Gf/~]. (4) 

Here i = i, 2, 3: 1 point source. 2 line, 3 planar; ~i = Q~/c (4~a) di, [Qt] = J, [Q2] = J/m, 
[Q,] = J/m 2, dl =-3/2, d2 =--I d, , =--1/2, r~ = (x-xl) 2 + ~y-yx) 2 + (z-zt) 2, r~ = (x-xx) 2 + 

2 = r~/4a. (y -y1 )  2, r ]  = ( x - x , )  2, e i  

The rate of change in temperature on instantaneous heating is found by differentiating 
(4): 

Then (5)for i = I (point source) is the fundamental solution to the conduction equation 
written for temperature change rates. 

We integrate (5) with i = i over the spatial coordinates to get expressions for the tem- 
perature-change patterns for line and planar sources in (5) (i = 2 and 3). 

We integrate (i)-(3) with respect to t from 0 to ~ to get expressions for the tempera- 
ture distributions in unbounded bodies on step heating that coincide with those derived in [2, 
4, 5 ] :  

T~I = =cl erfc , (6) 
(Yl 

where =ci = qi (4~a)e~, and qi is the heat flux. 
C 

We differentiate (6)-(8) with respect to T to get expressions for the rate of change in 
temperature in an unbounded body on step heating: 

V ei = ~ci xai exp ( - -  6~/T). (9) 

Formulas  (9) and (4) a g r e e  a p a r t  f rom a c o n s t a n t  f a c t o r .  
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One can also derive (9) if �9 in (5) is replaced by x--t and the expression is integrated 
with respect to t from 0 to ~; we show that these expressions can be used to derive the ther- 
mophysical parameters, beginning with step methods. 

Let the rates V, and V~ corresponding to Y, and ra in step heating be known; we take the 
ratio and use (9) with the subscripts i and c here and subsequently omitted to get 

V~ ( x21-~ %--% = exp 6 2 

Y=--~i \ xi / ~i~ ' 

SO 

where AT = ~---r,. 
We rewrite (9) as 

r~Ax 
a = 4"q'cz tny  (i0) 

V= q (m2/(02 ]-aexp( ~-~-~) 
c \ , / " ' ( 1 1 )  

and  s u b s t i t u t e  (10)  i n t o  ( n )  to g e t  

~r2AT 
e e x p  �9 ( 1 2 )  

C Vi "~ tn------~ Ax 

As 2 = a c ,  

�9 exp . 
4Vi~ i i x~ln~ A x  (13)  

For AT << T~, za and AV = V2--VI << V,, V2 (i0) simplifies but loses accuracy: 

a:r214xl [ AVA~ Vi % d]. (14) 

(14) becomes exact for AT "+ 0: 

a=r~/4T[ V'x -=-d]. 
..... V (i5) 

As the (14) and (15) cases are analogous, we write expressions for c and I only for (15): 

q [ ~rZ ]aexp(d--+)), 
c =  V +i ~-- -~--d - ( 1 6 )  

~ q~ [ ~ ]~+1 
4.V'~ ~1 - -  d exp (d --~q), (17)  

where n V'T/V = V'/V' is the step parameter for the V(~) curve, IT, = I = --. V'd~=V/~; and  V' 
"6 

�9 0 

is the mean V' during [0,T]. The V(T) curves have the origin as common point and show two 
asymptotic forms of behavior: V = Au(z) (V' § 0, V' § co, D § 0) and z = Bu(V) (V' § ~, 
V' +0, n -~ ~), where A and B are constants and U(T) and u(V) are step functions. Parameter 
characterizes the closeness of the curve to one of the asymptotes and represents the relation 
between behavior of the curve near T = t and the average behavior of [0,T]. 

If one measures the rates of change in temperature at two different points and records 
the times Tx and T2 when V(r~, Tx)= V(r2, T2), one gets a further accurate and simple metho+d 
of deriving a, X, and c: 

C ~  

V1 (ITId ex p ( _  r~/4a.~l ) = g . f d  exp ( - -  r~/4a'~2) = V 2, 

(1"22 f~ )/4dlll(Tjs,1) ' 
a = T2 TI 

r+ , [ q [ ~xi ] r~a ln  (~jxi) 
�9 ~ xi exp r~ r~ 

Vl [ din(*,/%) % ( - - z l  % ) 

(18) 

(19) 
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q (rtlh)e 
V1 4 

1 '+' i- ] 
- -  dln('q/~r) ] exp[ "q( "q'] "l:,r'~). " (20) 

Then 

(9) has its maximum when 

�9 ,,,~ = ~r~/(-- d). (21) 

k = 

a : rZ/4 (-- d) ~ro.ax, (22)  

c q ( ~-~r~ )eexpd ,  (23)  
Vlllax 

q:~e {, r z k ~ + l  
exp d. (24)  

It is complicated to use (6)-(8) because they contain special functions, but this be- 
comes possible because we are interested mainly in the initial instants, when the unbounded- 
body approximation applies closely. Then asymptotic expansions exist for x >> I in [2, 6] in 
(6)-(8): 

1 exp(--xD (1 1 3 ) 
erfc x ~ -i/'----~ x 2x ----~ + 4x ~ ' 

e x p ( - - x )  ( II 2! ) 
E1 (x) = --- Ei (-- x) ~ 1 -- -- + -- -- ... 

X X X z 

and on considering V/T, we get 

- a = r~14~[rl--(d + 2)1, (25)  

where ~ = VT/T = T'mlT is the step parameter for T(T); one can obtain information on T(T) from 
independent measurements or by instrumental or numerical integration applied to measurements 
on V(T); (25) is simple and convenient. We supplement it with expressions for X and c: 

q ( n r a l e  
e = ~- t,--~-'-) exp (-- 11'), (26) 

;~ = V 4"~ \ - ~ - }  exp ( - -  ~'), (27)  

where n '  = w-(d + 2). 

We now consider instantaneous-heating methods; (9) and (4) coincide apart from a con- 
stant factor, so most of the results for V c can be transferred in a formal fashion to T6. 

We consider V/T and omit the subscript 6 here and subsequently to get 

a = rZL4T (n -- d), (28) 

where n = VT/T = T'T/T is the T(Y) step parameter: 

c = ' Q  ( nr.___~2 )dexp(d__~l); (29) 
T ~] - -d  , 

Q n e ( r ~ )  ~+1 
-- exp (d - -  ~1)- (30) 

4TT ~t - -  d 

We find the turning points in (5), for which we solve (V)~ = 0: 

~m~x = ~ / ] / 1  -----d (]/1 - - d  + l), 

�9 m ,~  = ~ 1 - 1 / ~  (V! - - d -  l). 

We find the zeros in (5), (c21~Z) + d = 0: 

~z = 02/( - d). 

(31) 

(32) 

(33) 
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From (31)-(33) we h a v e  

a - r2/4~,.~.~ ] / - 1 ~  (V1 : - -d  q- 1), (34)  

a = r~/4%~ ]/-[-----d (V  1 - -  d) - -  1), (35)  

a ~- r2/4TZ(-- d). (36)  

Deriving the turning points is poorly conditioned because the radius of curvature for 
V(T) is insufficiently small near the maximum and (especially) the minimum. Then if one re- 
quires higher accuracy in determining a, it is better to use (36), since V'(Tz) issufficiently 
large. We use (36) and (5) written for any other T* for which V' (T*) is sufficiently large 
to define c and % with the required accuracy: 

c 

4V (~*) x* ( ~ ' ~ z -  1 - -  - -~,~ exp \(d "~*'~;z It" (38)  

When (34)-(36) are used, we are rigidly restricted to Tmax, ~min, and Tz: we therefore 
propose a formula for any 3. Logarithmic differentiation applied to (5) gives 

g'~ (d -- n) (1 -- n) ~2 
~1 = --  (d - -  1)-~ , n = - -  -~- d, 

V n 

SO 

a = r~/4~ [ •  (x--<z) ~•  (39)  

where'~ = n/2 + i; sign(T--r z)={l; T < 3z; 0; �9 = Tz; --1; T > ~z}, with T z the zero of (5). 

This is an exact formula if n = V'T/V is derived exactly; many of the previous expres- 
sions contain n = V'T/V (~ = T'r/T), which itself contains the derivative V', which is not 
measured directly, so V' can be derived by differentiating the measured V(~). That is pos- 
sible if the curve is first smoothed, but it is not always possible to get the required accu- 
racy. However, all the expressions containing n are of undoubted value, since they enable 
one to solve the problem, which is one of separating roots on using iterative methods to solve 
algebraic equations. When one knows the range in which the exact solution lies, one can em- 
ploy methods having guaranteed convergence such as division into halves [7], which canbecom- 
bined with some method of accelerating convergence such as Aitken's method [8], which enables 
one to find the root with given accuracy quite rapidly. 

If we transfer this to our case, (39) and similar expressions containing q represent the 
exact solution of F(a) = 0, e.g., as in (5). 

We used the descending differences V' d ~ (Vx--Vz)/AT and the ascending ones V' a ~ (V~-- 
V_,)/~ [9] to get the left boundary 

and the right boundary 

of the root of 

where 

V(%)__=~2d--~[ r~ ] ( r~ ) �9 4 - ~ ,  -]- d exp = 0 ,  ' 
4a% 

V~ A-----~ ; Tld = V~ A~ 

(42)  

The above method gives the root a n with a given accuracy; frequently, the substitution 
~* = (ha + qd)/2 into (39) gives the root with sufficient accuracy. 

If numerical values for d are substituted into (31),(32), we get the following pattern: 
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Tmaxl ~ 0.25r 2, Tmax2 ~ 0.-29U 2, Tmax8 ~ 0.37(r 2, 

2 

The Tma x spread is slight, and Tz3 = 3Tzl , i.e., the process for a planar source is three 
times slower than for a point one as regards attaining TZ, SO from the viewpoint of lag, a 
system based on a point source is better than a linear or planar one. 

The transfer from measuring T(r,T) to measuring V(r,T) thus provides a series of simple 
and quite accurate formulas for ~, c, and a for stepped or instantaneous heat sources acting 
in unbounded bodies. 

We see from (6)-(8) and (9) that there is a considerable simplification on going from 
temperature measurement to measurement of the rate of change. 

In conclusion, we neglect measurement errors in estimating the relative errors of the ap- 
proximations (14) and (25). 

For a2/T ~ i0, i.e., at the start, where AT/T ~ 10 -2 , (14) has a relative error of about 
3%; for a2/T ~ i0, (25) gives a relative error of about 0.5%, i.e., (14) and (25) canbe used 
on the same basis as the accurate formulas. Calculations show that the time required to give 
a reliable measurement of the rate V~ in nonstationary-frequency methods is less by an order 
of magnitude than the time required to give a reliable measurement of T~ by amplitude methods, 
which confirms that the nonstationary-frequency methods are more sensitive and rapid. 

NOTATION 

T, temperature; V, rate of change of temperature; Q, amount of heat; q, heat flux; a, 
thermal diffusivity; c, specific heat; x, y, z, spatial coordinates; T and t, time; E~(u) = 
--El(--u), integral exponential function; erfc(u) = I -- erf(u), where erf(u) is the error func- 

tion; ,ierfc (u) = erfc~d~ - -  ] / ~  exp(.u~)--uerf  cu. 
X 
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